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In the present paper we study the development of convective instability in a horizontal 
fluid layer, leading to formation of hexagonal cells when the parameters are subject to some 

constraints. In addition we investigate the stability of the steady convective flows. 
We,know [l] that hexagonal convective cells may appear when a horizontal fluid layer 

is heated from below. It was shown however [2 to 91 that the hexagonal shape of the cells 
is not unique. In the recent years [S to 8] it was found that the stability of convection with 
hexagonal cells depends on the effects, which are not taken into account when the convec- 
tion is described in the usual manner [2 to 4 and 9 to 111, i.e. when the transport coeffici- 
ents are temperature independent while the compressibility term appears in the equation of 
motion as a coefficient of volume expansion. In spite of the progress made it is still un- 
clear, in what manner the processes of interaction of a large number of cumultative pertur- 
bations lead to formation of a periodic hexagonal structure and it is these processe. that 
we shall consider below. 

1. When a fluid layer is heated from below, an equilibrium state can he reached in 
which the fluid is at rest, while the temperature, density and other hydrodynamic variables 
depend only on the vertical z-coordinate. This state may be unstable. In this case the de- 
viation X of the hydrodynamic variables from their equilibrium values is given by [12] 

X = 2 Irei!.’ Y == QZ + 2 2, (k1, IL) Q (/cl) Q (A,) + . . . (1.1) 
k 

dQ /dt = yQ $- 2 /I2 (Ii,, IL) Q (1~~) Q (k,) -:- 

+ 24 (h, &, h) Q (h)Q(k-?)Q (ks) t- . . . . Q(t = 0) -= t;i(k, (1.2) 

where k and r denote two-dimensional horizontal vectors. The wave vectors k,, . . . . k, 

appearing in the sums of order n in amplitude Q, satisfy the condition k, + . . . + k, = k. 

We assume that the thickness of the layer is small compared with its horizontal di- 
mension 1, therefore the boundedness of the layer in the horizontal direction is only reflected 
in the fact that the components of the wave vector k assumed discrete values 2nn/l fn = 0, 
fl , . ..). All functions of the wave numbers are symmetrical in k and become the corres- 
ponding complex conjugates on changing the signs of k. Coefficients y and H depend on 
the parameters A, while the coefficients Z depend, in addition. on the vertical coordinate. 
The amplitude E of the initial perturbation is assumed to be sufficiently small. 

A simple example of computing H and Z is given in the Appendix. More complicated 
examples are given in [5 to 91. although in these cases some restrictions are imposed on 
the v’ lues of the wave vectors. In all these examples the magnitudes y and H are real, 
therelure in the following we shall assume that the properties of the systems in question 
are all real. We shall later show that for such a system Eq. (1.2) has a large number of 
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the steady state, time-independent solutions, and that each anch solution will describe 

some convective motion. 
The rotational symmetry of the problem implies that the increment of the cumulative 

perturbations is 

tions, for which r 

= Y (lkl). At the critical value of A = A+, y I 0 only for these perturba- 

kl = h. The wave vectors of such perturbations differ from each other 
only in the value of. the polar angle 9 

cp = zf3~?t / N (n = 0.1, . . ., 6N, 6N G k,f) 

In the following we shall assume that the number of perturbationa is 6NB 1. 

Let as now suppose that the supercriticality is so small, that the increments y of the 
perturbations which have lkl c b 
tions for which lkl f k* 

are much smaller than the decrements of those perturba- 

IrI~Gww~“(~*~ I*) t (1.3) 
Then (1.2) can be reduced to an equation expressing the amplitude of the cumulative 

perturbations (whose wave vectors differ from each other only in the values of the polar 
angle rp),while the amplitudes of those perturbations for which lkl f k* C(UI be expressed 
as functions of the amplitude of the cumulative pertwbations 

Q (b + k-4 = 2Hs(kl,ks)Q(kl)Q(ks) 
2~ - T Pi + ks) 

(O<,k fksl+k) 

1‘ + (1.4) 

2 

Q(O)=2y7(o)y \’ t/p (k, - k) q (k) 
*Q ~ =rQ+d?+Q-- Q~Wtt cp’)qW) dt 

Q(p-l-n)==Q(cp), q==QQ, a==Jz(k+,k-) 

(1.5) 

Here and in the following we use the abbreviation/-l, (Cp) = f ((0 & ‘/a x),and the 

summation is performed over all 0 < ‘p < 2~t. Moduli of the WEVO vectors appearing in 
the right-hand sides of (1.4) and (1.5) are all equal to k *, and the last term in the expres- 
sion for 6 should be omitted when up’ = cp, g, & t/3 z. 

Since no direction is preferred in the syatem, we find that a is independent of q, 

while b = b (cp - cp’). Moreover, the coefficient b satisfies 

b ($) = b (- $ = b (n t $) (4.6) 
Indeed, each term 

b (cp - cp’) Q (cp) 4 (cP’) (1.7) 

describes the interaction of three perturbations whose wave vectors have equal moduli and 

whose sum, is equal to the given vector. Such three vectors are completely characterized 
by the acute angle $ between the given vector and the straight line containing the remain- 

ing two vectors. 
This angle has the same value for up - up’- 3~ $ = JC Ilt 9, therefore the correa- 

ponding terms of (1.7) should coincide when Q (v) = const. 

The convection with hexagonal cells is described by the steady state soluti6ns of (1.5) 
in which six symmetrically distributed perturbations have amplitodea of equal modali. while 
the amplitudes of the remaining perturbationa are equal to zero. When 

a>% Bo = i b(‘/,ni)>O 
i=1 
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then one these solutions is 

Q (‘lsW = ‘/r (a + V/a” + 4yH,) / Bo (i=i, _. .,6) (1:8) 

In order to have the steady atata amplitudes small, we must assume y and a small 

(although their ratio may be arbitrary). 
The increment y is small near the boundary of stability. Under the laboratory condi- 

dons the value of o ie also small [5 to g], since H, C 0 only when the small magnitude 
effects (compressibility and the dependence of the transport coefficients on temperature) 
which are usually neglected [2 to 4 and 9 to 111, are taken into account. Since H, is small, 
we can assume in (1.5) that b = - 6H,. 

The process of formation of the cellular convection has two distinct stages. During 
the first stage the cubic term in (1.5) is small. since the initial amplitude e is small. 
Quadratic term describes the interaction of six, symmetrically distributed perturbations. 

The amplitudes of each group of six become infinite after a finite period of time, the 

period being determined by the form and amplitude of the initial perturbation (1.2) (in 

which 1k1 - k+). This interaction results in the appearance of six peaks on the functions 
9 (q). and their distribution is determined by the form A (cp). 

In the second stage the cubic term is important. When b > 0, it restricts the growth of 
the perturbations, retaining in each peal only one perturbation with the maximum amplitude. 

2. Using the variables 

Q = ReYt, T = r-1 (e‘ft - 1) 

we can write the problem (1.5) and (1.2) as 

(2.1) 

dR 

dr= aR+fi---V +rVR~Wf-q+(cp’) +RR, H~=~.~(W)) (2.2) 
‘0’ 

When E + 0, the cubic term in (2.2) can be neglected for sufficiently small 2’. and the 

resulting problem has an exact solution. For the magnitudes 

IT = u (RR+R_), E = ‘ip (D - K), F = ‘/z (D + B), S = 1/3 (r + r+ + r_), 

P = ‘/* (rr, + r+r_ + r-r) (2.3) 

we can easily obtain, from (1.5). the following relation (a prime denotes a derivative in T 

RR’ = 0, D’=3aaP, E =‘/,rdln(R/R)/dT = E,, (2.4) 

r---o= s-ss,, s’= 2F, F’ = 3a2P, P’ = 4SF 

The subscript zero means that the relevant magnitude is taken at T = 0. Eqs. (2.4) 

have the following integrals 

T 

e=a~6R=‘/,ln~=e,_~_~~‘~ 
I 

sa-P=(s2-P)()=S*2 O 

Thus the system (2.4) can be reduced to 

S’=2F, F’ = 3~2 (sf -- Se2) (2.5) 

Fig. 1 showa the phase plane of the system (2.5). Arrow0 denote the direction of 
motion and we see that the phase curvea are symmetrical with respect to the S-axis. 

The integral of (2.5) can conveniently be written aa 
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Fig. 1 

F2 (S, S,) I= n2 (S -- S,)(s’ + SS, + Smz - 3S,*) 

F. = F (S,, S,), F, - F(So, S,) (231 

Obviously, the magaitndes S and t are non-negative for any T. This means that (Fig. ‘1) 
we have 

F*2- Fo2 > 0, min (r, r_. r& + S,- Lc~ > li 
for any initial conditions. 

We shall give one of the direct proofs of the above inequalities in the Appendix. 
Solution of (2.5) and (2.6) is given by 

J(S)-; r ----- dS 
S: d(S - S,,)(S”+SS,,tS,’ - 3s.‘) 

m 

(2.7) 

When S 2 S,,, it has the form 

J(S)FJ(So) = 214 T (2.8) 

where the opper sign ia used when Fa > 0, srtd the lower sign- when F* .< 0. 
The valne of S becomea infinite after the time ?‘, = T (s = uo) - 1 / 1 ae]. 

When I’m- T are small, (2.7) and (2.8) yield 

2f4V&- T)=I(m)--J(S)=~[i HO] (2.9) 

r = s== u-*(T,--- T)-?, P = a*(T,- T)-3 

Behavior of the amplitude q depends essentially on the oilpl of Y - 1 + y T, 

i 

(*+1TPrf--f/r) (T-,--l(T*V<O) 

Q -_ (v/o)‘/V, - TP P-+T,,Y>O) 

rzl./af C.f’-+ T,, V=O) 

The magnitudes F, S, P. T, introduced above are 1/3tr-periodic functiono of 9. 
Let OS now assnme that the form of the initial deviation A (Cp) in sach. that the tima Z’&) 
on the interval@ < cp < t/3 n, 
then. fornmall ?“* 

attains it6 minimum value T* at an ndqae point ‘p*; 
- T, thu fnnction r (Cp) will have six sharp ma&ma at the points 

V = qplt f ‘I:{ ai (i = 0, . . . . 5). The smplitade q (cp) will also exhibit much maxima, pravided 
‘that y* = 1 + y Z’* > 0 (when If* < 0, all partorbatioas cease at luge d. 

3. Under certain conditions (defined in this section) II chuacterimtic tfms 7’. exfsts, at 
which the function q f(p) has already formed sharp peaks, while the csbfc term in (2.2) im 
atill small. 
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The width A of the peaks is given by 

6r,A=&k r* = r (cp,) (3.1) 
0 

When T ‘Te, (3.1) and (2.9) yield 

The peako appear sharp when A < 27~. We shall use 
(3.3) 

~b(~--cp’)r(rp’)=B(cp)r,il=t/,L3(cp)Zr, B(q)=jJ b(‘/~i+cg--~~*) 
0’ i=t 

to estimate the cubic term in (2.2). The accuracy of this equation is inversely proportional 
to A. The cubic term restricts the grcwth of perturbations, provided that B (Cp) > 0. Taking 

this term into acconnt we can obtain from (2.2) and (3.3) 

T’ = 2F - 2 (1 -I- YT) rr$ (G (3.4) 

which, together with (2.9). implies that when cp = q*, then the cubic terms is small com- 

pared with its derivative, provided that 

A(T) > I’-$, / (a2C+“), B, = B(cp*) (3.5) 

The characteristic time Tu mentioned above exists, .if 

J’,R, / (a2J’,“) < A (Tu) < 1 

Wheny>O andTeN - T, -1 / 1 QE 1 the inequalities 

each of the magnitudes 

B&lal. Tfi, I a” 

(3.6) 
(3.6) hold, provided that 

is small compared with unity; if y < 0, then the assumption that the sum of these mag- 

nitnde is small, suffices. 

4. Let the inequalities (3.6) hold. Then we find, that when CAL, = In (1 +Yyu)/y, 

Eq. (1.5) becomes (with (3.3) taken into account) 

d/2 ldt t= r/;, + aQ,Q-, 1‘.=r_ 1/,n (rp) rq (4.1) 

Its l olntion ie expressed in the terms of the following functions: 

: : 

(4.2) 

which themselves constitute a solotion of the following problem 

dU / dt = UI’, dr / dt = U, ZJ (1;) = 1, T (t,) = T, (4.3) 

From (4.1) and (4.2) it follows that R = Q/U satisfies Eq. dR/d = a;$_, whose 
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solution was discussed in !&&on 3. According to (2.9) we have, for Cp z ‘pe 

FV3 = y3 / aa, q = Vzr = y2 / a2, y == U/(T,--T) (4.4) 

From (4.3) we have 
(4.5) 

&//dt = ~1’ -I- T/O, I = 1 /(T,-- To), I’ = r-- 1/s13(rp) 1V,/a’, IV, = ZTJ”’ 

The amplitude Q caa be found if W, (t) is known. To obtain it, we shall multiply (4.5) 

bymym- 1 and aum the rasnlt over all Cf 

&l/m / dt = m (l’,u’, + Wn,, ,) (m=2,. . ., M- 1) (4.6) 

Here we have ntilised the relation 

Zrym -- l’*lV, (4.7; 

which holds for at least small values of t - to when the peaks oa the function y are snf- 

ficicntly sharp. At any Y we find that the number of equations in (4.6) is one lees than the 
number of the unknowns. Thus the system (4.6) together with (4.5) becomes a closed one 
for cp = ‘p* provided that we set the value of M sufficiently large aad put WM = y*M. 

Eqs. (4.6) and their initial conditions are, together, equivalent to the problem (4.3) in 
which B is independent of cp and equal to B*. Solution ‘I*, T* = T of this problem can be 
found directly. 

Relations (4.3) and (4.4) yield 

(4.8) 

For y = 0 the solotion becomes 

from which it follows that when T + ye, 

u, = u(T,--T){~+O[(T,-T)~~(T,---T~~~~), u=a'i& 

T1 = min T,(cp,&*/g/N) (4.9) 

When y f 0, the asymptotic solution has, as before, the form f4.9), but u is give I by 

u = t/c.( 1 + 1/l -I- 4yU, / a?) a2 / 13, 

Relations (4.3). (4.4) and (4.9) readily yield 

ICU-+~~/lal. F*Ue3-> u3 / a” ,,,, T -+ T, (4.10) 

From (2.3) it follows that 

F,Ue3 -k a cos (0 -j-- 8, + K), (u / [ a 1)” 

which, together with (4.10). implies that 

cos(8+6++0_),-+a~~a~ (4.11) 
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Thus, in the ataady atate, the phasea of the amplitudes Q become partly correlated, 

while their exact valoe can be foand from the initial conditions and are given by the expres- 

xion for 8 face above). 
The angle Cpa together wfth three phases 19 in (4.11) define the orientation of the 

hexagons relative to the initial coordinate system (on which the initial deviation was given). 

Thin mystem can be rotated and translated in the horizontal plane in such a manner, 
that the coordinate origin will coincide with the center of one of the hexagons, and one of 
the horfxontal nxea will paas through two vertices of this hexagon. Rotation will be defined 
by the angle cp ,, while the translation will be given by three phases satisfying the relation 
(4.11). As expected, the orientation of the hexagons is determined by the form of the initial 
deviation. 

Evolution of the pertarbationa with Cp # ‘p* can be described by the relations (4.4) 

and (4.2) in which W, f:) is obtained from (4.3) and (4.8) 

(4.12) 

Relations (4.2) and (4.12) yield 

b 

By (4.4). all pertarbations with cp # rp* 

As t+oo, we have 

T, - T -+ e-u’, u --z uB’B* exp (- ut [ 1 - (B, - B) u / a’]) 

Therefore the sufficient condition for (4.13) to hold is, that the expression within the 

eqnare brackets is positive for any ‘p . At the aame time (4.13) will hold, if the form of the 

initial deviation is such, that the minimum T m at the point r#* is sufficiently sharp. If the 
condition (4.13) is violated, then at sufficiently large t the relations (4.7) and (4.8) cease 
to hold mince additional sextuple peaks whose amplitudes are comparable with the ampli- 
tudes of the fundamental set of peaka, begin to appear on the function q (~1. The resulting 
ateady state of the system will have several sextuple amplitudes different from zero. and 
in accordance with (4.4) we may expect that each sextuple set will have equal amplitudes 

and that F > 0. 

5. When considering the formation processes, we have imposed strong constraints 

(3.6) on the parameters of the system. The steady state may also be stable under the 
weaker constraints. In order to determine them, we shall investigate the stability of the 
mymmetrfc, steady solutions of (1.5). In such solutions, the only amplitudes different from 
zero, are 

Q tvo + in I n) (1 = I,..., 20, u > I) (5.1) 

Solationa (5.1) in which only the angle (r o and the phases of the amplitudes Q are dif- 

ferent, are phyaicelly indistinguishable. therefore in the following we shall assume that 
‘PO -0 and. that the amplitudes Q are real. It can be assumed without loss of generality 
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that in (1.5) 02 0 and, that the steady-state amplitudes are positive (if a < 0, then in ac- 

cordance with (4.11) we can assume that when n/3 the amplitudes (5.1) is an integer, for 
which i/3 are integers, are negative). Renceforth we shall only consider those steady statea. 

which can be atable. 
The following notation ia used in investigating the stability of (5.1) : 

tn 1 
n,, (cp) I= c b (cp t- in i a). P, = Kl (O)* a,, =f It, (‘:& h, = 

if l/r+4 $3Jn iz 
i=l 

From (1.6) it follows that 

which, after putting n = 1, yields the relations for b = XB,. Conditions of stability depend, 

essentially, on the divisibility of n by 3. Let us suppose that R is not divisible by 3; then 

in the steady-state the quadratic term in (1.5) vanishes and we have the following expres- 
sion for the steady state amplitudes Qo. 

QO==Vi/L (7 >, (4 Pr, > 0) (5.3) 

Infinitesimal perturbations Q (9) of the steady state solution (5.1) and (5.3) satisfy 

Q. = Qqo f?,, - %)~ ip # ix/n, irr/n $- ?/g (r,.r,) 

which is obtained by linearising (1.5) in Q, and whioh yields one of the conditions of 

stability 
@s < B, (cp) (cp + ix/j?, ix/n { 9/d (xl! 

Pertarbations Qrt =Z Q (in / n & r/r n) aatiafy Eq. 

Q* ‘=yQ, + zQoQit -%Q, 

Adding and sobstracting these qnations we obtain the additional conditions of 

stabiiity 

r - qo;r,, -1 aQo c 0. y t a= > P,, I Pn -- FM? (5.6) 

Equations for the pertubations Qi == Q (ix / n) have the form 
n (5.7) 

li’ = - 2 qo 2 bijqt (‘1 < i d s), bij =z b (n (i - i) lx) z bi t-j 1, n z b,- 1 t__j 1.n 

f-1 

from which it folfowe that the steady-state solution ia table, if al1 roots h of Eq. 

.Ds G I7.8ij -im b, j 1 =z 0 
are negative. 

(5.8) 

Each row of the determinant (5.8) is the same cyclic permutation of the one above 
(such determinant is of the circnlant type). 

1131 

The cfrcafant type determinant D, whose first row elements are or,.... as, is equal to 

f (e) ! (es) . . . I (en) (! (r) -- al -I- nix + . . _ -1. a,*>.“-I, &?L=e214/n 
1 

For the determinant (5.8) we have 

Since p (m, n) = p (n -- m, n), the stability conditions are 

p (m, n) > 0 (9 Q m d ‘1.: n) 

(5.9) 

(5.10) 
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When R h large. the Fourier expansion (5.2) may be limited to ita firat two terms. 
while the l nm fn (5.9) can be replaced by an intogal; the conditiona (5.5), (5.6) and (5.10) 
will then become 

bu<O, f / a’J > 2 &I /.(uh,,% b, > 0, 0 G m i W (5.11) 

Since the first and third condition have an oppoaing sense, it followe that the number 

of stable aolntiona ia finite for an 
conditions (5.5) and (5.10) hold [9 f 

functions b (9). In particular, if b (q) > b (01, then the 
only for the solution with n - 1. 

The second condition of (5.11) h s owa that the regfon of stability decreases with in- 

creasing n (eince the Fonrier coefficients b,, decrease faeter than l/n). 
For the eteady-atate aolotiona (5.1) in which the number ie equal to 3n, the quadratic 

term in (1.5) is different from zero and 

00 = a a / Vh.3~~) (h, < 1, Psn > 0) (5.12) 

Perturbation Eq. haa the form 

0. = Q (-r - Qo%n) 

This yields one of the stability conditiona 

2 h, > I- &u/Ps,, 

Perturbations Qi = Q (‘/a in / n) satfafy 

ml 

Qi' = ~Qo (- Q -t_ ~+ -~- ~_)i - Q”’ ~ Xibij (1 <i<6nj 

i-l 

X,=(0+ B,i, bij L b ($ z (i - i) / n) 

from which we have 

(5.13) 

(.5. 16) 

x,* = 'Qo('~ -2 .Ur) - 4 Qo’~ X,bij, si = (S + s, + ‘U_)i (5.15) 
j=l 

From this we obtain, for S 

St’=aQeSt- 2 Qo’ i BijSj (i= I, . . . , a) arij = tz, (l/3 ;I (i - i)] n) 

j=l 

Solution of this sqnation will decay, if the roots x of 

are negative. 
l(~--‘/~~lQ,)6~+B~jI=O (5.16) 

The determinant (5.16) is a circulant. consequently the additional stability conditions 

are obtained in the form 

a (m, n) *,a < -jj--- (1 < I)I < f n) , G (m, n) I fJ II, (55) ~0s + (5.17) 
2n #=l 

If they are satisfied, then in (5.15) S + 0 et large t. The magitades X decay. if the roots 

A of 

are negative. 

I (X 4 %a I Qo) 60 + bij I - 0’ (i, 1 = I, . . ., 3n) (5.18) 

The determinant (5.18) is a circnlant and the additional stability conditions have the 

form 
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hn > - p (m 3rd I P,, (1 a JR < VA (S.iO) 

Equations for Yt = Qt - Gt do not Iaad to additions) stability conditions. Their 
solution 

rt (1) = Ye- ‘13 [I - cxp (- 3aQo~)l[~‘(O); Y,(O)+ Y_(O)!t 

+ow~ that aa t + DD ) the phase perturbationa do not vanish altboogb (4.11) bold for each 

set of six. 

At large II tbe conditions (5.12). (5.13). (5.17) and (5.19) can be expressed in terms of 

the coefficients appearing in (5.2) 

f$,, --L 6&> 0 (c)<h,,< I), %",> $,, + I$,, I 

2W,, < b:,,, (1 < 111 < *+a), 4bd, > - b,,, (1 < nr < ‘,/g) 

and it follows from these conditions, that. the necessary condition for atability is, that 

b,, > o. 
Hexagonal convective cells are stable. if 

(5.20) 

fi3 = 2b (0) -f- 4b (If, x) > 0, p3h3 > b (V, n) -- b (O), 1 > h, > 1/z (1 -- luin& / PJ 

(all these conditions except the last one, were obtained earlier in [al). 

In the actual problems [91 ( see also tba Appendix) b (~1 3 0, therefore the region of 

stability exists on tbe axis y/o’. 

6 .Tbe steady state solotions of (1.5) are, in general, nonsymmetric. They consist of 
m sets of six and n (not included in the six-sets) pairs of positive amplitudes, and within 
each six-sat the amplitudes are equal to each other, while the angleaqi,forwbicb Qi=Q(w)>O, 

are not proportional to i. The condition Qi > 0 imposes a restriction on the possible values 
of ‘pi. 

Conditiona of stability of the nonsymmetric solutions are obtained in the same manner 

se the corresponding conditions for tbe symmetric solutions. For example, instead of (5.5) 

we can find 

67n+ 2n 

B(T) = -2 b(T-Tj)Qj>‘(T,) 

where qi characterized the steady atate amplitudes appearing in n pairs. Similarly we cau 

find the analogs of (5.6) and (5.13) by considering tbe pertnrbations Q(cP # Tt) . We find 

tbat the matrix 1 C (Oi - vj) 1 in the equations derrcribing the perturbations” Q (qi ) is sym- 
metric, but not circulant; therefore the corresponding stability conditions cannot be obtained 
explicitly for every n and m, 

When discussing tbe formation processes we noted, that the nonsymmetric solutions 
may be obtained when the initial perturbation is of the suitable form (when the function 

TC= (9’) introduced above has a weak minimum). It may also occur, when mia Tm occura at 
two distinct points 

Finally we note, that in deriving (1.5) we have utiliaad tbe fact that the fluid layer is 
bounded in the boriaontal directions, although the restriction (1.3) imposed on the auper- 
criticality is not essential tp - ‘pm & */r 7t / N). 

In general we aball aaaame that tbe wave vectora appearing in the rfgbt-band aides of 
(1.4) and (X.5) have their moduli equal to that value of k. (A), for which y is maximum. It 
may happen that the denominator in (1.4) may become aero at some particular values of A. 
In this cane we may expect 1121 th a a steady-atate motion will be set up in the system, t 
with the wave vectora whose moduli will differ from aach other by about l/r. 

In the limit, aa I + 00, solution of the ayatam (1.1) and (1.2) may be sought in the form 
of a series in a with aubasquent summation of tbe asymptotic (at large C) terma of the aariea 

114. 
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Appettdix. An an sxtiple we ahall obtain (I.11 and (1.2) for a simple mode] 

pmblem (61. 

a 
[ ( -- __ F3 -i- -&)” +a$ - 3v cos i 

1 
1 a3x2 

al tir? x t- ‘z-7 = 0 

x = azs 1 a5 =- aIs 1 a+ = 0 when ,’ =: 0, n (A.1) 

where u ia a small parameter. Inserting (1.1) into (Al) we obtain 

Y’ - LY j- ‘/.J (YrYc)‘N zz 0, Yt =; Y (k,) (.\.I?) 

L=hk?+ (a?;az?-q~ + zvcos z (&$- ks == k) 

Here the dot denotes differentiation with respect to t, while the dash - differentiation 

with respect to x. 
Boundary conditions for Y are the same as those for X. 

Equations for Y, H, and Z, are obtained by inserting (1.1) and (1.2) into (A2), 
writing the result as a series in Q of the type of (1.1). and equating to zero the coefficients 
of like Q in the sums. Boundary conditions for Z, are the same as those for X. 

Equation for y and Z has the form 

yz - LZ =: 0 
For the unstable branch we have 

Z = sin z i- v K sin 23 -i- 0 (v?) (A 3) 

y.= Ik’J -- (f -; /i2)3 + 0 (v?), K-1 z (4 -}- kr)3 _ (f + x-‘)” 

At some ko (h). the increment will assume its maximum value yO. With small super- 

criticality A = a _ ~71~ we have 

IkoI=(lf-‘/,A)/ V/:!. T zz ‘/?A - 9 (1 k ) - /CO)~ (:I.‘() 

Equation for’Z, has the form 

(yI i- yr - L) Z2 z= - ZH, -I- 2 sin 22 -- 1/q v (K, t- K2) (sib J - 27 sin 32) -t 0 (~2) =; @I’ 

(k, -;- x-? = k, ~~ z-z 1 (ki), Ki = K (Xi)) 

A solution exists for any k. if 

x 

s 
dzZY = 0 

0 

Thin, together with (A3), yields 

Hz = - ‘/qv (Kl j- Kz -- 8K) -F_ 0 (v?), k = kl + ka (A.5) 

Zr = 2i’sin 22 -)- 0 (v), v-1 = 7, 3. yz - JJ$ -1 (4 4. k’)” 

When determining Z,, we can assume that v = 0. The corresponding equation has the 

the form 

(y, + yr -I- y3 - L) 2, = - 1/6 [V (Ii,, k,) i- V (k,, k,) + V (k3, k,) -t- 
-+ GH,] (sin2 - 27 sin%) - 27 H, sin35 (k, -I- k, -t k, = k) 

To find H, we mast equate to zero the expression within the square brackets. This, 

together with (1.4) and (A3) to (AS) will yield, with the accuracy up to the terms 

K = 41351, a = 3vK 

1 I I 
~- 

b = 64 + (5 _t c)” - ?7ir (I + e) + (5-IIflL-(.j ’ c I3 cos (rp --- (p’) 
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Fnnction b (c) is even and satisfies (1.6). Since b > 0 we find, in acoordauce with 

(5.201, that a region of stability of hexagonal cells exists. 
In Section 3 we used physical considerations to derive less ob~ous,fne~alitieu. It 

is sufficient to prove them for For = (rr+r_),, ru = t . When proving the first inequality 

we find it convenient to assume, that 0 6 r* < 1 (in the second inequality rk > 1) 

is more convenieo t). 
It appears that the symmetric functions of the arguments rf (which are shown to be 

nonnegative) can exhibit extrema only on the straight line r* i r_ . After that we confirm 
that the inequalities hold on this straight lines as weli as on the boundary of the region 
of variation of rf. 
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